
Self-Triggering at ProtoDUNE

Thijs Miedema
Supervised by Frank Filthaut



Introduction

● Last week some Phil presented the next step at ProtoDUNE towards self-triggering

● We look forwards to the step after with some notes on infrastructure

2



Goals

● A self-triggering ProtoDUNE in 2019

● Requires actual trigger, not just primitives/candidates, need to define interesting/calibration 

signals to not get swamped with all cosmics
○ Horizontal cosmics
○ Stopping cosmics

3



Concrete plan

● Work together in producing trigger candidates in C++ realtime at ProtoDUNE

● Take these candidates and use them to create algorithms to select our interesting signals, again, 

realtime at ProtoDUNE

● Heavily rely on Brett's IPC to ship our data:
○ Nice to evaluate working with this
○ Allows us to move our “algorithm boxes” from physical box to other physical box

4



Phil's self-triggering design

5

● Minimal changes with 
respect to current setup to 
allow a form of 
self-triggering

● Main drawback: can only 
trigger within existing 
timewindows as spit out by 
the timing 
board+configuration

● This is definitely not how it 
will work @DUNE



Phil's self-triggering design++

6

● Instead of the timing board 
giving the ZeroMQ 
command to build the 
fragment we let the 
software data selector do 
it.

● Send the trigger to artdaq 
with slight (few ms) delay 
to allow the frag gen to do 
it's thing

● Still not how we want it at 
DUNE, but closer

● Allows full self-triggering



Yet Another Attempt At Putting This In A Diagram

7Scenario 1: CPU hitfinding - Candidate generation “somewhere else”



Y.A.A.A.P.T.A.

8Scenario 2: FPGA hitfinding - Candidate generation “somewhere else”



Y.A.A.A.P.T.A.

9Scenario 3: FPGA hitfinding - Candidate generation on Felix host, minimal changes!



Concluding remark

● With minimal changes to existing systems we can build a DUNE-like triggering system at 

ProtoDUNE

10


